Structural diversity in the small heat shock protein superfamily: control of aggregation by the N-terminal region.

نویسندگان

  • John C Salerno
  • Cheryl L Eifert
  • Kathleen M Salerno
  • Jane F Koretz
چکیده

The small heat shock protein superfamily, extending over all kingdoms, is characterized by a common core domain with variable N- and C-terminal extensions. The relatively hydrophobic N-terminus plays a critical role in promoting and controlling high-order aggregation, accounting for the high degree of structural variability within the superfamily. The effects of N-terminal volume on aggregation were studied using chimeric and truncated proteins. Proteins lacking the N-terminal region did not aggregate above the tetramers, whereas larger N-termini resulted in large aggregates, consistent with the N-termini packing inside the aggregates. Variation in an extended internal loop differentiates typical prokaryotic and plant superfamily members from their animal counterparts; this implies different geometry in the dimeric building block of high-order aggregates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Expression Analysis of Two Arabidopsis LRR-Protein Encoding Genes Responsive to Some Abiotic Stresses

AbstractTwo Arabidopsis thaliana genes, psr9.2 and psr9.4 appearedto be highly similar to a phosphate-starved induced gene,psr9, isolated from Brassica nigra suspension cells.Sequence analysis classified the encoded polypeptides asmembers of leucine-rich repeat (LRR) proteins superfamily.The sequence of psr9 proteins comprise a unique N-terminalregion e...

متن کامل

Prokaryotic Expression of Influenza A virus Nucleoprotein Fused to Mycobacterial Heat Shock Protein70

Background and Aims: The novel approaches in influenza vaccination have targeted more conserved viral proteins such as nucleoprotein (NP) to provide cross protection against all serotypes of influenza A viruses. Influenza specific cytotoxic T lymphocytes (CTL) are able to lyse influenza-infected cells by recognition of NP, the major target molecule in virus for CTL responses. On the other hand,...

متن کامل

Hyperglycemia and antibody titres against heat shock protein 27 in traumatic brain injury patients on parenteral nutrition

Objective(s):Hyperglycemia worsens the neuronal death induced by cerebral ischemia. Previous studies demonstrated that diabetic hyperglycemia suppressed the expression of heat shock protein 70 and 60 (HSP70 and 60) in the liver. IgG antibody titres against heat shock protein 27 (anti HSP27) were measured to determine whether hyperglycemia exacerbates ischemic brain damage by suppressing the exp...

متن کامل

Cryoelectron microscopy analysis of small heat shock protein 16.5 (Hsp16.5) complexes with T4 lysozyme reveals the structural basis of multimode binding.

Small heat shock proteins (sHSPs) are ubiquitous chaperones that bind and sequester non-native proteins preventing their aggregation. Despite extensive studies of sHSPs chaperone activity, the location of the bound substrate within the sHSP oligomer has not been determined. In this paper, we used cryoelectron microscopy (cryoEM) to visualize destabilized mutants of T4 lysozyme (T4L) bound to en...

متن کامل

Pain Relief with Wet Cupping Therapy in Rats is Mediated by Heat Shock Protein 70 and ß-Endorphin

Background: Wet cupping therapy is a complementary therapy in pain management. The mechanism of this therapy, however, needs further elucidation. Cells injured by wet cupping therapy seem to stimulate the expression of heat shock protein 70 (HSP70). Its benefit in pain reduction could be mediated by the expression of ß-endorphin. This study aimed at determining the correlation between HSP70 and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein engineering

دوره 16 11  شماره 

صفحات  -

تاریخ انتشار 2003